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We study the motion of vortices in the conserved and nonconserved phase-ordering models. We give an
analytical method for computing the speed and position distribution functions for pairs of annihilating point
vortices based on heuristic scaling arguments. In the nonconserved case this method produces a speed distri-
bution function consistent with previous analytic results. As two special examples, we simulate numerically the
conserved and nonconserved Os2d model in two-dimensional space. The numerical results for the noncon-
served case are consistent with the theoretical predictions. The speed distribution of the vortices in the con-
served case is measured. Our theory produces a distribution function with the correct large speed tail but does
not accurately describe the numerical data at small speeds. The position distribution functions for both models
are measured and we find good agreement with our analytic results. We are also able to extend this method to
models with a scalar order parameter.
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I. INTRODUCTION

The phase-ordering dynamics of certain physical systems
after a rapid temperature quench below the critical tempera-
ture is dominated by the annihilation of topological defects
of opposite charge[1]. In particular then-vector model with
nonconserved order parameter(NCOP) Langevin dynamics,
where the defects are vortices, has been studied in some
detail [2–4].

Mazenko[4,5] carried out an investigation of the distri-
bution of defect velocities for nonconserved phase-ordering
systems. By using an approximate “Gaussian closure”
scheme, he was able to compute the velocity distribution for
vortices in the nonconservedn-vector Langevin model for
the case of point defects wheren=d dimensions. We carried
out numerical simulations for then=d=2 nonconserved case
and measured the vortex speed distribution[7]. The results
are consistent with Mazenko’s theoretical predictions. In par-
ticular, a power-law tail of the distribution at large speeds
that is robust is correctly predicted. The problem of the rela-
tive velocity as a function of separations for annihilating
pairs was treated in Ref.[5], and the velocity distribution for
strings for the nonconserved order parameter case was
treated in Ref.[6].

Bray [8] developed a heuristic scaling treatment of the
large speed tails based on the disappearance of small defects
(annihilating pairs or contracting compact domains). This
method treated only the power-law exponent of the distribu-
tion’s large speed tail. For the nonconservedn-vector case
this simple argument gives a result consistent with Mazen-
ko’s theory. However, this method is also able to produce the
large speed tail exponents for the conservedn-vector models,
and conserved and nonconserved scalarsn=1d models.

We show here that Bray’s arguments can be extended to
give results beyond the tail exponents. In models where point
defects dominate the dynamics, one can compute the defect
speed distribution functions based on Bray’s scaling assump-
tion. The same idea can be easily generalized to the scalar
order parameter case.

In a very recent work Mazenko[9] has suggested how the
previous work in Ref.[4] can be extended to anisotropic
systems and the conserved order parameter(COP) case. He
finds that the average speed goes ast−1 for the COP case with
a scaling function of the same formal form as for the NCOP
case given by Eq.(40) below. These results are not in agree-
ment with the analytical or numerical work presented below
in this paper. The Gaussian closure method developed in Ref.
[9] does not appear adequate for treating the COP case.

In the next section we will generalize Bray’s argument for
the point defect case. We find simple analytic expressions for
the speed and separation distribution functions. We recover
the large speed tail exponents obtained previously by Bray.
For the nonconservedn-vector model we obtain precisely the
same results as found in Ref.[4]. Then in Sec. III we present
the numerical simulation results for a nonconservedn=d
=2 Langevin model. Next, in Sec. IV, we present the simu-
lation results for the conservedn=d=2 Langevin model. In
Sec. V, we point out that the method developed in this paper
can be used for those cases where one has a scalar order
parameter.

II. THEORETICAL DEVELOPMENT

Let us suppose that we haveN pairs of oppositely charged
vortices which are on their way to annihilation. We suppose
that pair i is separated by distancer istd with relative speed
vistd= uṙ istdu. Consider the associated phase-space distribution
function

fsr,v,td =Ko
i=1

N

d„r − r istd…d„v − vistd…L . s1d

This quantity satisfies the equation of motion
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]

] t
fsr,v,td = −

]

] rKo
i=1

N

ṙ istdd„r − r istd…d„v − vistd…L
−

]

] vKo
i=1

N

v̇istdd„r − r istd…d„v − vistd…L .

s2d

Our key kinematical assumption is that the relative velocity
is a known function of the separation:

ṙ istd = − vistd = − u„r istd…, s3d

v̇istd = u8„r istd…ṙ istd = − u„r istd…u8sr istdd. s4d

We check these assumptions as we proceed. Equation(2)
then takes the form

]

] t
fsr,v,td =

]

] r
fusrdfsr,v,tdg +

]

] v
fusrdu8srdfsr,v,tdg,

s5d

where we have the normalization

E
0

`

drE
0

`

dvfsr,v,td = Nstd. s6d

Equation(5) is one of our primary results.
Our assumptions are consistent with being in a regime

where the annihilating pairs are independent, and we can
write

fsr,v,td = NstdPsr,v,td, s7d

wherePsr ,v ,td has the interpretation as the probability that
at time t we have a pair separated by a distancer with rela-
tive speedv. Inserting Eq.(7) into Eq. (5) we find that
Psr ,v ,td satisfies

]

] t
Psr,v,td =

]

] r
fusrdPsr,v,tdg +

]

] v
fusrdu8srdPsr,v,tdg

+ gPsr,v,td s8d

where

g = −
1

Nstd
Ṅstd. s9d

We will see thatg [andNstd] is determined self-consistently
by using scaling ideas.

We are interested in the reduced probability distributions

Prsr,td =E
0

`

dvPsr,v,td s10d

and

Pvsv,td =E
0

`

drPsr,v,td s11d

with the overall normalization

E
0

`

drE
0

`

dvPsr,v,td = 1. s12d

Our goal is to solve Eq.(8). The first step is to show that

Psr,v,td = Prsr,tdd„v − usrd…. s13d

Inserting Eq.(13) into Eq. (8) we have

d„v − usrd…
]

] t
Prsr,td = gd„v − usrd…Prsr,td

+
]

] r
fusrdd„v − usrd…Prsr,tdg

+
]

] v
fusrdu8srdd„v − usrd…Prsr,tdg

=d„v − usrd…SgPrsr,td

+
]

] r
fusrdPrsr,tdgD+ usrdPrsr,td

3S ]

] r
d„v − usrd…

+
]

] v
u8srdd„v − usrd…D . s14d

Using the identity

]

] r
d„v − usrd… =

]

] r
E dl

2p
eilfv−usrdg

=E dl

2p
− ilu8srdeilfv−usrdg

= − u8srd
]

] v
d„v − usrd…, s15d

we find that Eq.(13) holds withPrsr ,td determined by

]

] t
Prsr,td = gPrsr,td +

]

] r
fusrdPrsr,tdg. s16d

Imposing the normalization

E
0

`

drPrsr,td = 1, s17d

we find on integrating Eq.(16) over r that

g = lim
r→0

usrdPrsr,td. s18d

Thusg andNstd are determined self-consistently in terms of
the solution to Eq.(16).

So far this has been for generalusrd. Let us restrict our
subsequent work to the class of models where the relative
velocity is a power law in the separation distance:
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u = Ar−b, s19d

whereA andb are positive. Next we assume that we can find
a scaling solution1 to Eq. (16) of the form

Prsr,td =
1

Lstd
F„r/Lstd… s20d

where the growth lawLstd is to be determined. Inserting this
ansatz into Eq.(16), we obtain

− LbL̇sxF8 + Fd = Ax−bF8 − Abx−b−1F + Lb+1gF, s21d

wherex=r /Lstd. To achieve a scaling solution we require

LbL̇ = AC s22d

and

Lb+1gstd = AD, s23d

whereC andD are time independent positive constants; the
factor of A is included for convenience. Equation(21) then
takes the form

− CfxF8 + Fg = DF + x−bF8 − bx−b−1F. s24d

This has a solution

Fsxd =
Bxb

s1 + Cx1+bds , s25d

whereB is an overall positive constant and the exponent in
the denominator is given by

s = 1 +a/z, s26d

wherez=1+b anda=D /C. If we enforce the normalization
Eq. (17), we find thatD=B. This reduces the spatial prob-
ability distribution to a function of two unknown parameters
B andC assuming thatb is known.

We are at the stage where we can determine the number of
annihilating vortex pairs as a function of time. From Eqs.
(18), (9), and(25) we have that

gstd =
AB

L1+b =
AD

L1+b , s27d

and we again have thatD=B. However, from Eq.(22) we
have

1

1 + b

d

dt
L1+b = AC s28d

and for long times

L1+b = ACzt. s29d

Putting this result back into Eq.(27) we find

gstd =
AB

ACzt
=

a

zt
. s30d

We have then, from Eq.(9), that the number of pairs of
vortices as a function of time is given by

Nstd/Nst0d = st0/tda/z. s31d

However, from simple scaling ideas we have rather generally
that for a set of point defects ind dimensions

Nstd < L−d. s32d

Comparing this with Eq.(31) we identify a=d. This gives
our final form forFsxd:

Fsxd =
Bxb

s1 + Cx1+bd1+d/z . s33d

We check the validity of this result in Secs. III and IV.
The speed probability distribution is given by

Pvsv,td =E
0

`

dr Psr,v,td

=E
0

`

dr dsv − Ar−bdPrsr,td

=
B

AbL1+b

1

ṽ2+1/bS1 +
C

L1+bṽs1+bd/bD−s

s34d

whereṽ=v /A. We can define the characteristic speedv̄ via

S v̄

ṽ
Ds1+bd/b

=
C

L1+bṽs1+bd/b s35d

or

v̄std =
Cs1+bd/b

Lb ~ t−s1−1/zd s36d

and

Pvsv,td =
B

ACbv̄

1

V2+1/bs1 + V−s1+bd/bd−s =
1

v̄
pvsv/v̄d s37d

where V= ṽ / v̄ and the distribution function has a scaling
form. Clearly the large speed tail goes asV−p where p=2
+1/b in agreement with Bray’s result. After rearrangement
we find

Pvsv,td =
1

v̄
pvsv/v̄d =

d

Abv̄

Vs

s1 + Vs1+bd/bds , s38d

where

s=
B

Cb
− 1 =

d

b
− 1. s39d

We numerically test this result for various models below.

III. NONCONSERVED n-VECTOR MODEL

We now want to test our theoretical results forPrsr ,td and
Pvsv ,td for the nonconserved time-dependent Ginzburg-

1More generally Eq.(16) has the solution

Prsr,td =
1

usrd
expSE

t*

t

gst8ddt8Dx„t − tsrd…,

wheretsrd=er*

r dr8 /usr8d, x is an arbitrary function, andr* and t*
are two constants.
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Landau(TDGL) Osnd model whereb=z−1=1. If we work
in terms of dimensionless variablesṽ=v / v̄ andr̃ =r / r̄, where
v̄std and r̄std are the average speed and separation as func-
tions of time, then Eq.(38) gives the vortex speed distribu-
tion function by changing the variable

pvsṽd = dbd/2 ṽd−1

s1 + b ṽ2dsd+2d/2 , s40d

with b=pfG(s1+dd /2) /Gsd/2dg2. b is obtained by requiring
the normalization ofpv andṽ=1. This is exactly the familiar
result found in Ref.[4] for n=d. The average speed isv̄
~ t−1/2 andz=b+1=2.

As a special case, whenn=2, we have

pvsṽd =
2bṽ

s1 + b ṽ2d2 , s41d

with b=sp /2d2=2.4674. Bothpvsṽd andv̄std have been veri-
fied in Ref. [7]. The energy and defect number are propor-
tional to st / ln td−1, where there is a logarithmic correction.
But we did not see such a correction for the average speed
v̄std~ t−1/2.

Let us turn next to the distance distribution function.
From Eq.(33) we have, forn=d=2,

Fsr̃d =
2Cr̃

s1 + Cr̃2d2 , s42d

whereC=2.4674.
We check this numerically using the same data as in Ref.

[7]. The model is described by a Langevin equation defined
in a two-dimensional space,

] cW

] t
= ecW + ¹2cW − scW d2cW , s43d

wheree is set to be 0.1, and the quench is to zero tempera-
ture, so we need not include noise. We worked on a 1024
31024 system with lattice spacingDr =p /4. Periodic
boundary conditions were used. Starting from a completely
disordered state, we used the Euler method to drive the sys-
tem to evolve in time with time stepDt=0.02.

The position of a vortex is given by the center of its core
region, which is the set of pointssxi ,yid that satisfy

ucW sxi ,yidu, kucW ul /4. By fitting ucW sxi ,yidu, wheresxi ,yid are the
points belonging to a vortex’s core region, to the function
Msx,yd=A+Bfsx−x0d2+sy−y0d2g, we can find the center
sx0,y0d. The positions of each vortex at different times are
recorded, and the speed is calculated usingv=Dd/Dt. Here
Dd is the distance that the vortex travels in timeDt=5.

To measurer̄std and Fsr̃d we must first accumulate the
following data. In a given run we keep track of the trajecto-
ries of all the vortex centers. We label each pair of oppositely
charged vortices which annihilate and then move backward
in time to determine for each such pair the separation as a
function of time r istd. Then r̄std is the average separation
between annihilating pairs of vortices at timet. The average
distancer̄std is shown in Fig. 1. From the discussion in Sec.
II we expect

r̄std = Lstd = aft + sr̄0/adzg1/z, s44d

where r̄0= r̄st=0d and a is a constant. The average distance
between annihilating pairs increases with time, and a fit to
the data givesa=2.71, r̄0<50, andz,2.22.

To measure the probability distribution functionFsr̃d, we
distribute the various pairs into bins of widthD=0.01 cen-
tered about the scaled separationr istd / r̄std. We then plot the
number of pairs in each bin versusrstd / r̄std and properly
normalize to obtain the scaling result shown in Fig. 2. In the
following, when we measure the other distribution functions
with scaling properties we employ the same method. The
curve representingFsxd given by Eq.(42) is also shown in
Fig. 2. There is no free parameter in the fit other thanb and

FIG. 1. The average distancer̄ between annihilating pairs versus
time after quench. The data are averaged over 68 runs. The fit to the
data is given by Eq.(44).

FIG. 2. Separation probability distributionFsr̃d versus the
scaled separation for the NCOP case withn=d=2. The data are
averaged over 68 runs with a bin size of 0.01. The solid line is Eq.
(42) with b=1 anda=2. In the inset we show the same data on a
logarithmic scale. At larger the distribution is approximately a
power law with an exponent about 6. The dashed line in the inset is
proportional tor̃ −6.
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a. The fit is fairly good. At large distances we can see that
the function approximately obeys a power law. The exponent
is about 6, which is different from the value 3 indicated by
Eq. (42). We do not know why it is so.

We next measureūsrd, the average speed for annihilating
defects separated by a distancer. We track the motion of
each annihilating pair, and determine for each pair the speed
ui =fr ist+Dtd−r istdg /Dt as a function ofr i. Then we average
uisrd over all the pairs that have a fixedr i =r. The result is
shown in Fig. 3. For small enough separations we have
ūsrd~ r−b whereb<1 as expected.

IV. CONSERVED n-VECTOR MODEL

Let us turn to the case of a conserved order parameter
where for a TDGL model we expectb=z−1=3. In this case
the vortex speed distribution Eq.(38) is given by

pvsṽd =
nbn/4

3

ṽ sn−3d/3

s1 + b ṽ 4/3dsn+4d/4 s45d

with b=fnGs5/4dG(s3+nd /4) /Gs1+n/4dg4/3and the average
speed isv̄, t−3/4, where we have usedd=n. As a special
case, considern=2, where

pvsṽd =
2Îb

3

ṽ−1/3

s1 + b ṽ 4/3d3/2, s46d

with b=2.277 73. . . Notice that, unlike the NCOP case here,
pvsṽd blows up for smallṽ. This appears to be an unphysical
feature.

The distribution function for the distance between annihi-
lating pairs, Eq.(33) with b=3 andn=d=2, gives

Fsr̃d =
2Cr̃ 3

s1 + Cr̃ 4d3/2, s47d

whereC=11.817. . ..

We simulated the conserved Os2d model in two dimen-
sions to test these predictions. The model is described by a
Langevin equation defined on a two-dimensional space,

] cW

] t
= − ¹2cW − ¹4cW + ¹2fscW d2cW g=¹2dHEfcW g

dcW
, s48d

where the effective Hamiltonian is given byHEfcW g
=ef−1

2cW 2+ 1
2s¹cW d2+ 1

4scW 2d2gd2r. All the quantities are dimen-
sionless. We work on a 2563256 system with lattice spacing
Dr =p /4 and again periodic boundary conditions are used.
We employ the method invented by Vollmayr-Lee and
Rutenberg [10] to numerically integrate Eq.(48). This
method is stable for any value of integration time stepDt. As
the time t increases, the evolution of the system becomes
progressively slower. With the new time step technique we
can increase the time step to accelerate the evolution. We let
Dt=0.01 t0.36 after t.120.

In addition to the vortex statistics discussed in the NCOP
case, we also measure the average energyE=kHEl above the
ground state energyE0=−S/4 with S being the area of the
system. The energy and number of vortices are shown in Fig.
4. The power-law exponent for the defect number is −0.51,
which is consistent withd/z=1/2. Thedecay power law for

FIG. 3. Test of Eq.(19). See text for a discussion. The data are
averaged over 68 runs. There is a scaling regime at small distances
r with an exponent near to −1. At large distances, while the statis-
tics are not as good, there is still an approximately power-law de-
pendence onr.

FIG. 4. The energyEstd−E0 and the vortex numberNstd are
plotted versus time after quench. The data are averaged over 61
runs. The dashed lines, which are guides to the eye, are proportional
to t−0.41 for the energy plot andt−0.51 for the vortex number plot.
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the energy ist−0.41, which is slower than that for the defect
number. This may be due to the relaxation of spin waves.

We use the same method as in the nonconserved case to
find the center for each vortex. The speed of each vortex is
computed by usingv=Dd/Dt with t=10. We measure the
speed for each vortex at the same timet and average over
different vortices. The average speed of the defects is shown
in Fig. 5. The prediction for the exponent is −s1−1/zd
=−0.75, while the measurement finds −0.77.

Next we determine the speed distribution as a function of
time. Again we plot the scaled data from different times to
test the scaling property of this distribution function. The
resultantpvsṽd is shown in Fig. 6. Clearly scaling works and
the large speed tail exponent is 2.24. This is close to the
prediction2+1/b=2.33. However, the theory fails at small
scaled speeds where the simulations go to zero while the
theory blows up. Clearly the exponents in Eq. (38) is poorly

determined in the theory forb=2 andd=2. If we allowb and
a float then we obtain an excellent fit as shown in Fig. 6.

The average separation of annihilating pairs of vortices
r̄std for the COP case is shown in Fig. 7. Again fitting this to
the form given by Eq.(44), we find a=2.285,r̄0=17, andz
=4.0.

As in the NCOP case we can measure the separation dis-
tribution functionFsr̃d. This is shown in Fig. 8. With no free
parameters,b and a being fixed, the fit is pretty good. At
large distances, the statistics are poor, but we can see that the
function approximately obeys a power law. The exponent is
about 4, which is different from the value 3 indicated by Eq.
(47).

We also measureūsrd, as in the NCOP case. Our results
are shown in Fig. 9. The assumptionu, r−b is well satisfied
with b<3 at small enough distances.

FIG. 5. The averaged speed of vortices at timet for the COP
case. The data are averaged over 61 runs.

FIG. 6. The probability distribution for vortex speed for the
COP case. The data are from 61 different runs. The bin size is 0.01.
The solid line is Eq.(46). The dashed line is the best fit topvsṽd by
changingb and a. In the inset we show the same data on a loga-
rithmic scale. The dashed line in the inset is used to guide the eye
and is proportional toṽ −2.24.

FIG. 7. The average distancer̄ between annihilating pair of
vortices versus time after quench for the COP case. The data are
from 61 runs. The fit to Eq.(44) is given in the text.

FIG. 8. The probability distribution for the separation between
two annihilating vortices for the COP case. The data are averaged
over 61 runs. Bin size is 0.01. The solid line is Eq.(47) with b=3
and a=2. In the inset we show the same data with a logarithmic
scale. The behavior of this function at large distances is approxi-
mately a power law with an exponent about 4. The dashed line is
proportional tor̃−4.
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V. SCALAR MODELS

We follow the argument given by Bray[8] to extend our
discussion to include models with a scalar order parameter
sn=1d. First we calculate the probability functionPrsr ,td for
the domains with radiusr. This calculation is the same with
that in Sec. II. We obtain Eq.(33) for Fsxd. Next, we com-
pute the area-weighted probability for the interfacial radius
of curvaturer by multiplying Fsxd by xd−1, and then normal-
ize the resulting quantity. The resulting probability function
Fssxd is

Fssxd =
dGsd/zdCs1+d+zd/z

Gs1/2dG„sd + z− 1d/z…
xd+z−2

s1 + Cxzd1+d/z . s49d

Following Bray we usev=Arb to get the distribution func-
tion for the interface speed:

Pvsṽd =
dGsd/zdb1/z

sz− 1dG„1/zdG„sd + z− 1…/z…

ṽ −1+1/sz−1d

s1 + bṽ 1+1/sz−1dd1+d/z .

s50d

For the nonconserved case, this result is the same as the one
obtained by Bray using a Gaussian calculation. The large

speed tail exponent isp=2+d/ sz−1d, which is valid for both
conserved and nonconserved models.

VI. CONCLUSION

We show how a simple generalization of Bray’s scaling
argument can lead to quantitative results for certain distribu-
tion functions. In particular, we find that the distribution
function for the distance between annihilating pairs of vorti-
ces is well described by the scaling theory for both NCOP
and COP dynamics forn=d=2. We are also able to compute
the speed distribution function using these ideas. For non-
conserved models, we reproduce the accurate result obtained
previously. For conserved models, the speed distribution
function gives us only the correct tail exponent.

Our method can also be extended to scalar cases and can
generate a full expression for the interfacial speed distribu-
tion. The power-law tail exponentp=2+d/ sz−1d is ob-
tained. The result is the same as the result obtained by Bray
[8].

The simple scaling method presented here leads to a rea-
sonable description of the statistics of defect dynamics.
Clearly, it does a better job for the NCOP case since the
speed distribution function for the COP case does not show
the proper small speed behavior. Similarly, the more micro-
scopic method of Ref.[9] leads to an adequate treatment of
the small speed regime for the COP case but does not give
the correct large speed tail.

The approach developed here is highly heuristic. Can it be
systematized? Clearly, to improve this approach one would
need to include the interactions between different pairs. It is
not clear how one does this.
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