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Vortex kinetics of conserved and nonconserved () models
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We study the motion of vortices in the conserved and nonconserved phase-ordering models. We give an
analytical method for computing the speed and position distribution functions for pairs of annihilating point
vortices based on heuristic scaling arguments. In the nonconserved case this method produces a speed distri-
bution function consistent with previous analytic results. As two special examples, we simulate numerically the
conserved and nonconserved2p model in two-dimensional space. The numerical results for the noncon-
served case are consistent with the theoretical predictions. The speed distribution of the vortices in the con-
served case is measured. Our theory produces a distribution function with the correct large speed tail but does
not accurately describe the numerical data at small speeds. The position distribution functions for both models
are measured and we find good agreement with our analytic results. We are also able to extend this method to
models with a scalar order parameter.
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I. INTRODUCTION In a very recent work Mazenki®] has suggested how the
previous work in Ref.[4] can be extended to anisotropic
The phase-ordering dynamics of certain physical systemsystems and the conserved order param@e&P) case. He
after a rapid temperature quench below the critical temperainds that the average speed goes agor the COP case with
ture is dominated by the annihilation of topological defectsy scaling function of the same formal form as for the NCOP
of opposite chargél]. In particular then-vector model with  case given by Eq40) below. These results are not in agree-
nonconserved order parame{®&fCOP) Langevin dynamics, ment with the analytical or numerical work presented below
where the defects are vortices, has been studied in SOMg this paper. The Gaussian closure method developed in Ref.
detail [2—4]. ) ) o _ . [9] does not appear adequate for treating the COP case.
Mazenko[4,5] carm_eq out an investigation of the d'sm_' In the next section we will generalize Bray’s argument for
bution of defect \{elocmes for nonconsetved ph_ase-orderm%he point defect case. We find simple analytic expressions for
systems. By using an approximate G"?‘“SS.'a”. clpsurethe speed and separation distribution functions. We recover
scheme, he was able to compute the velocity distribution fo[he lar d tai : .
ge speed tail exponents obtained previously by Bray.

vortices in the nonconservedvector Langevin model for For th atvect del btai elv th
the case of point defects whened dimensions. We carried or the hohconservamvector modet we oblain precisely the
same results as found in R¢#]. Then in Sec. Il we present

out numerical simulations for the=d=2 nonconserved case . . :

and measured the vortex speed distributih The results 1€ numerical simulation results for a nonconservedd
are consistent with Mazenko's theoretical predictions. In par=2 L@ngevin model. Next, in Sec. IV, we present the simu-
ticular, a power-law tail of the distribution at large speeds!ation results for the conserveu=d=2 Langevin model. In

that is robust is correctly predicted. The problem of the rela>€C- Vi we point out that the method developed in this paper

tive velocity as a function of separations for annihilating @ Pe used for those cases where one has a scalar order
pairs was treated in Reff5], and the velocity distribution for ~ Parameter.

strings for the nonconserved order parameter case was

treated in Ref[6].

Bray [8] developed a heuristic scaling treatment of the Il. THEORETICAL DEVELOPMENT
large speed tails based on the disappearance of small defects
(annihilating pairs or contracting compact domainghis Let us suppose that we haiepairs of oppositely charged

method treated only the power-law exponent of the distribuvortices which are on their way to annihilation. We suppose
tion’s large speed tail. For the nonconserveslector case that pairi is separated by distanegt) with relative speed
this simple argument gives a result consistent with Mazenw;(t) =|r;(t)|. Consider the associated phase-space distribution
ko’s theory. However, this method is also able to produce théunction
large speed tail exponents for the consemradctor models,
and conserved and nonconserved scaiarl) models.

We show here that Bray’s arguments can be extended to N
give results beyond the tail exponents. In models where point fr,o,)={ > 8(r = r,(t) 8w - vi(t) ). (1)
defects dominate the dynamics, one can compute the defect i=1
speed distribution functions based on Bray’s scaling assump-
tion. The same idea can be easily generalized to the scalar
order parameter case. This quantity satisfies the equation of motion
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N 0 o
if(r,v,t)=—i<2i’i(t)é(r—ri(t))ﬁ(v—vi(t))> J drf dvP(r,v,t)=1. (12)
ot ar i=1 0 0

N Our goal is to solve Eq8). The first step is to show that

- —{ 2 o8 -ri®) 8w - vi() ).
i=1 P(r,v,t) = P,(r,t) 8(v — u(r)). (13

2

Our key kinematical assumption is that the relative velocity
is a known function of the separation:

ri(®) == vi(t) = - u(r;(v), ()

Inserting Eq.(13) into Eqg.(8) we have
B0 = UD) S-P(r.0 = 330 = U)P (1.0

dJ
B0 =U (LD = - uEOU ). @) *orlunel = um)Pr bl

We check these assumptions as we proceed. Equéion 9 / _
then takes the form + &U[u(r)u (r) o —u(r)P(r,1)]

%f(r,v,t) = %[u(r)f(r,v,t)] + :—v[u(r)u’(r)f(r,v,t)], =6(v - U(f))(VPr(r,t)

5 0
® + —[u(r)Pr<r,t>])+ u(r)P, (1.0
where we have the normalization ar

e x(ia( —u(n)
f drf dof(r,0,H) = N(t). (6) FIat

0 0 P

Equation(5) is one of our primary results. + Eu’(r)é(v - U(f))>- (14)
Our assumptions are consistent with being in a regime

where the annihilating pairs are independent, and we cafysing the identity
write

f(r,0,t) = N(OP(r,0,0), (7) 9 o -ur) =2 f AN o-u]

ar ar ) 2w

whereP(r,v,t) has the interpretation as the probability that

at timet we have a pair separated by a distaneeith rela- :f dn AU’ (r)eMv-u]

tive speedv. Inserting Eq.(7) into Eq. (5) we find that 2

P(r,v,t) satisfies J

5 5 5 =- u’(r)Ea(v - u(r)), (15)

EP(r,v,t) = ;[u(r)P(r,v,t)] + E[u(r)u’(r)P(r,v,t)]
we find that Eq(13) holds with P,(r,t) determined by

+yP(r,v,1) (8)
J d
where Epr(ht) = yP(r,t) + E[u(r)Pr(r,t)]. (16)
Y=- %N(t)- (9)  Imposing the normalization
We will see thaty [andN(t)] is determined self-consistently ” _
by using scaling ideas. . drP.(r,) =1, (17)

We are interested in the reduced probability distributions
we find on integrating Eq16) overr that

P.(rt :f dvP(r,v,t 10 .
r.0 0 ( ) (19 y=Ilim u(r)P(r,t). (18)
r—0
and ) ) )
Thusy andN(t) are determined self-consistently in terms of
(" the solution to Eq(16).
Py(v,t) = fo drP(r,v,t) (11) So far this has been for genenalr). Let us restrict our
subsequent work to the class of models where the relative
with the overall normalization velocity is a power law in the separation distance:

031104-2



VORTEX KINETICS OF CONSERVED AND.. PHYSICAL REVIEW E 70, 031104(2004)

u=Ar", (19)

whereA andb are positive. Next we assume that we can find
a scaling solutiohto Eq. (16) of the form

M=o 2

=—, 30
ACzt zt (30)

We have then, from Eq(9), that the number of pairs of
1 vortices as a function of time is given by
L(t) N(t)/N(to) = (to/t) 2. (31)

where the growth laviL(t) is to be determined. Inserting this However, from simple scaling ideas we have rather generally
ansatz into Eq(16), we obtain that for a set of point defects ith dimensions

N(t) = L™, (32

Comparing this with Eq(31) we identify a=d. This gives
our final form forF(x):

(20)

—LPL(XF’ + F) = AXPF' = Abx P I + LD 1yF,  (21)
wherex=r/L(t). To achieve a scaling solution we require

LPL = AC (22

Bx

(1 + CXl+b)l+d/Z )

b+1 —

L") =AD, (23 We check the validity of this result in Secs. Il and IV.
whereC andD are time independent positive constants; the The speed probability distribution is given by
factor of A is included for convenience. Equatigl) then
takes the form

and F(x) = (33

Pv(v,t):fOO dr P(r,v,t)
0

- C[xF’ + F]=DF +x °F’ - bx *"'F. (24)
This has a solution :f dr 8(v — Ar®)P,(r,1)
BxX° °
F(x) = —(1 T Oy (25) B 1 C -0
_AbLl+bl“')’2+lfD 1+ Ll+bi)‘(1+b)/b (34)

whereB is an overall positive constant and the exponent in
the denominator is given by wherev=v/A. We can define the characteristic speeda

o=1+alz, (26) (F)(1+b)/b c
= = 35
wherez=1+b and@=D/C. If we enforce the normalization O] L Lo L+0rb 39
Eq. (17), we find thatD=B. This reduces the spatial prob-
ability distribution to a function of two unknown parameters
B and C assuming thab is known. _ cuom 1n
We are at the stage where we can determine the number of v(t) = T (-1 (36)
annihilating vortex pairs as a function of time. From Egs.
(18), (9), and(25) we have that and
_AB _AD B 1 L1
y(t) = 1% = 1+ (27) P,(v,t) = Fb?vz*”"(l +\/(LH)Dy-0 = 5pv(v/;j (37)

and we again have th@=B. However, from Eq(22) we
have

1 d
——L"*=AC 28
1+bdt (28)
and for long times
LM = ACzt (29

Putting this result back into E¢27) we find

"More generally Eq(16) has the solution

1 t
P(r,t) = EGX%J Y(I')dt'>X(t - (),
te

wherer(r)=/; dr'/u(r’), x is an arbitrary function, and. andt.
are two constants.

where V=v/v and the distribution function has a scaling
form. Clearly the large speed tail goes ¥ where p=2
+1/b in agreement with Bray’s result. After rearrangement
we find

1 A
PO =GR v (39
where
B d
s= o, 15, L (39

We numerically test this result for various models below.

IIl. NONCONSERVED n-VECTOR MODEL

We now want to test our theoretical results Bfr,t) and
P,(v,t) for the nonconserved time-dependent Ginzburg-
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Landau(TDGL) O(n) model whereb=z-1=1. If we work oo T
in terms of dimensionless variablésv/v andr=r/r, where
v(t) andr(t) are the average speed and separation as func 100f
tions of time, then Eq(38) gives the vortex speed distribu-
tion function by changing the variable

~d-1

Pu(@) = B .

1+ ’3'52)(d+2)/2 ’

(40 =

with B=#{I'((1+d)/2)/T'(d/2)]%. B is obtained by requiring
the normalization op, andv=1. This is exactly the familiar
result found in Ref[4] for n=d. The average speed is
«t™2 andz=b+1=2.
As a special case, wher=2, we have .
o Mo "o 1000

p,(v) = m (41) t

o FIG. 1. The average distancéetween annihilating pairs versus
with B=(m/2)?=2.4674. Bothp,(v) andv(t) have been veri-  time after quench. The data are averaged over 68 runs. The fit to the
fied in Ref.[7]. The energy and defect number are propor-data is given by Eq44).
tional to (t/In t)™%, where there is a logarithmic correction.

UE(L:;O\:\/t?lgld not see such a correction for the average speed (1) = L(t) = at + (rgfa)7]*?, (44)
Let us turn next to the distance distribution function.

From Eq.(33) we have, fom=d=2, wherer,=r(t=0) anda is a constant. The average distance

between annihilating pairs increases with time, and a fit to

2CT the data giveei=2.71,r,~50, andz~ 2.22.
F(F) = m (42 To measure the probability distribution functi®itr), we
distribute the various pairs into bins of width=0.01 cen-
whereC=2.4674. tered about the scaled separatigi)/r(t). We then plot the

We check thi; numerjcally using the same datg as ianefnumber of pairs in each bin versug)/r(t) and properly
[7]. The model is described by a Langevin equation defineghormalize to obtain the scaling result shown in Fig. 2. In the

in a two-dimensional space, following, when we measure the other distribution functions
(912 with scaling properties we employ the same method. The
7y _ ez,Z+V2¢— ()24, (43) curve representm@(x) given by Eq..(42) IS also shown in
at Fig. 2. There is no free parameter in the fit other thaend

wheree is set to be 0.1, and the quench is to zero tempera-
ture, so we need not include noise. We worked on a 1024
X 1024 system with lattice spacingsr=m/4. Periodic
boundary conditions were used. Starting from a completely
disordered state, we used the Euler method to drive the sys-
tem to evolve in time with time stept=0.02.

The position of a vortex is given by the center of its core
region, which is the set of pointgx;,y;) that satisfy
(%, i)l <(|¢d)/ 4. By fitting |14(x;,y;)|, where(x;,y;) are the
points belonging to a vortex’s core region, to the function
M(x,y)=A+B[(x—Xp)°+(y—Yo)?], we can find the center
(Xo,Y0)- The positions of each vortex at different times are
recorded, and the speed is calculated usirghd/A7. Here
Ad is the distance that the vortex travels in tile=5.

To measurer(t) and F(f) we must first accumulate the
following data. In a given run we keep track of the trajecto-
ries of all the vortex centers. We label each pair of oppositely s 5 Separation probability distributiofi(f) versus the
charged vortices which annihilate and then move backward. e separation for the NCOP case withd=2. The data are
in time to determine for each such pair the separation as g eraged over 68 runs with a bin size of 0.01. The solid line is Eq.
function of timer;(t). Thenr(t) is the average separation (42) with b=1 anda=2. In the inset we show the same data on a
between annihilating pairs of vortices at timeThe average |ogarithmic scale. At large the distribution is approximately a
distancer(t) is shown in Fig. 1. From the discussion in Sec. power law with an exponent about 6. The dashed line in the inset is
Il we expect proportional tar 6.

T T T T T
— Fixb=1lando=2
1+ 5; 1 T T

F@/r)

=
*
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FIG. 3. Test of Eq(19). See text for a discussion. The data are
averaged over 68 runs. There is a scaling regime at small distances
r with an exponent near to —1. At large distances, while the statis-
tics are not as good, there is still an approximately power-law de-
pendence om.

a. The fit is fairly good. At large distances we can see that 100k
the function approximately obeys a power law. The exponent '
is about 6, which is different from the value 3 indicated by
Eq. (42). We do not know why it is so.

We next measura(r), the average speed for annihilating e L
defects separated by a distanceWe track the motion of ) 100 1000 10000
each annihilating pair, and determine for each pair the speed
u=[ri(t+A7)-ri()]/Ar as a function of;. Then we average FIG. 4. The energyE(t)-E, and the vortex numbeN(t) are
ui(r) over all the pairs that have a fixeg=r. The result is  piotted versus time after quench. The data are averaged over 61
shown in Fig. 3. For small enough separations we haveuns. The dashed lines, which are guides to the eye, are proportional
u(r)«cr™® whereb~1 as expected. to t™04% for the energy plot and ! for the vortex number plot.

We simulated the conserved(Z) model in two dimen-
sions to test these predictions. The model is described by a

Let us turn to the case of a conserved order parametdrangevin equation defined on a two-dimensional space,
where for a TDGL model we expebt=z—-1=3. Inthis case

the vortex speed distribution E(B8) is given b Y - - .
vortex speed distribution E(39) s given by ﬁ—‘f:—vzw—v‘*wvz[(@zw]:vz

IV. CONSERVED n-VECTOR MODEL

bl o)
ng'4 -3 o

= - -
3 (+pT R where the effective Hamiltonian is given by{g[¢]
with B=[nT'(5/4)T((3+n)/4)/T(1+n/4)]*?and the average =f[-1y2+1(vy)2+L(yA2]dr. All the quantities are dimen-
speed isv~t~%“ where we have used=n. As a special sjonless. We work on a 256256 system with lattice spacing
case, considen=2, where Ar=7/4 and again periodic boundary conditions are used.
o/ s We employ the method invented by Volimayr-Lee and
p,@) = LB+ (46) ~ Rutenberg[10] to numerically integrate Eq(48). This
’ 3 (1+pB7 4332 method is stable for any value of integration time sipAs

with 8=2.277 73... Notice that, unlike the NCOP case herethe timet increases, the evolution of the system becomes
‘ o . progressively slower. With the new time step technique we
Fgg&rzlows up for small. This appears to be an unphysical can increase the time step to accelerate the evolution. We let
e : : .. At=0.011%%6 aftert>120.
Iati-lr;he g'if;”tl)zu“%gfwfg'%n_]?;t:gnqztfgce iSZtsween annihi- In addition to the vortex statistics discussed in the NCOP
g pairs, Eq(33) B =0=2.9 case, we also measure the average enérgy{s) above the

p,(v) = (45)

2CT3 ground state energl,=-S/4 with S being the area of the
F)= L+cro (47)  system. The energy and number of vortices are shown in Fig.
4. The power-law exponent for the defect number is —0.51,
whereC=11.817.... which is consistent witll/z=1/2. Thedecay power law for
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FIG. 5. The averaged speed of vortices at titrfer the COP FIG. 7. The average distangebetween annihilating pair of
case. The data are averaged over 61 runs. vortices versus time after quench for the COP case. The data are

from 61 runs. The fit to Eq44) is given in the text.

ig—0.41 ich i
;huemebr;rg_]ryhilét ma7 Vk\)lgK(:jzelstglﬁrge:eﬁgigtitgr?to]:‘osr ti?levxfjae\rg(s:t determined in the theory fdr=2 andd=2. If we allowb and
We u.se the sayme method as in the nonconsrzarved cas.e ({Ofloat then we obtain an excellent fit as shown in Fig. 6.
The average separation of annihilating pairs of vortices

find the center for each vortex. The speed of each vortex Wt) for the COP case is shown in Fig. 7. Again fitting this to

computed by using=Ad/A7 with 7=10. We measure the . , e —
speed for each vortex at the same titmand average over 112 éorm given by Eq(44), we finda=2.285,ro=17, andz

different vortices. The average speed of the defects is shown As in the NCOP case we can measure the separation dis-

T_OFlg'S 5\/;/h-i|;2ihgrfndégiz?eﬁénihf?no(lasxe(())n??t Is(1=1/2) tribution functionF(r). This is shown in Fig. 8. With no free
Next we determine the speed distribution as a function o aramgtersb and « bemg.ﬁxed, the fit is pretty good. At
time. Again we plot the scaled data from different times to arge_dlstances,_the statistics are poor, but we can see that_the
test the scaling property of this distribution function. The:i;)noclj'tojf1 aphﬁgzxilgn;tf?ge?]??rfmatﬁgvxglrulsv; i-rll-gi?: aet)égogeg IS
resultantp,(v) is shown in Fig. 6. Clearly scaling works and é47) ' Y EQ.

the large speed tail exponent is 2.24. This is close to th — :
prediction2+1/b=2.33. However, the theory fails at small revii:\:\?r?inmli?susr)a('ltz{ea;s?umeti'(\ulri(r)‘Pb i(;avsvzlll(z;tristﬁzglts
scaled speeds where the simulations go to zero while th@" 9. 9. ump

with b= 3 at small enough distances.

theory blows up. Clearly the exponesin Eq. (38) is poorly

T T T T T
T T T T A — Fixb=3,anda=2
tail exponent 2.24 I+ & 1 E
A — b=3anda=2
1 | -~ Best fit: b=0.54 and o= 1.00 7
LR | T T E
= £}
S~ p—
& = w 0.01f
=z o5 .
4
[=9
0.0001 st
0 L ‘ :
: 0 2 4 6 8
4 6 /T

ViV
! FIG. 8. The probability distribution for the separation between

FIG. 6. The probability distribution for vortex speed for the two annihilating vortices for the COP case. The data are averaged
COP case. The data are from 61 different runs. The bin size is 0.0hver 61 runs. Bin size is 0.01. The solid line is E47) with b=3
The solid line is Eq(46). The dashed line is the best fit pg(v) by and «=2. In the inset we show the same data with a logarithmic
changingb and «. In the inset we show the same data on a loga-scale. The behavior of this function at large distances is approxi-
rithmic scale. The dashed line in the inset is used to guide the eymately a power law with an exponent about 4. The dashed line is
and is proportional t@ ~224, proportional tor 4.
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' ' ] speed tail exponent |3=2+d/(z—-1), which is valid for both
conserved and nonconserved models.

0.1F

1= ool
VI. CONCLUSION

. i ] We show how a simple generalization of Bray's scaling
0.05} 00001 argument can lead to quantitative results for certain distribu-
tion functions. In particular, we find that the distribution

function for the distance between annihilating pairs of vorti-

i ces is well described by the scaling theory for both NCOP
kN and COP dynamics far=d=2. We are also able to compute
s e — * = the speed distribution function using these ideas. For non-

0 20 40 60 80 100 : ;
r conserved models, we reproduce the accurate result obtained

) ) previously. For conserved models, the speed distribution
FIG. 9. The average speed asa fupctlon of pair separation  f,nction gives us only the correct tail exponent.
the COP case. There is a scaling regime at smaiith the expo- Our method can also be extended to scalar cases and can
nent near th=3. The data are collected over 61 runs. generate a full expression for the interfacial speed distribu-
tion. The power-law tail exponenp=2+d/(z-1) is ob-
V. SCALAR MODELS tained. The result is the same as the result obtained by Bray
We follow the argument given by Braig] to extend our  [8].
discussion to include models with a scalar order parameter The simple scaling method presented here leads to a rea-
(n=1). First we calculate the probability functid®(r,t) for sonable description of the statistics of defect dynamics.
the domains with radius. This calculation is the same with Clearly, it does a better job for the NCOP case since the
that in Sec. Il. We obtain Eq33) for F(x). Next, we com-  speed distribution function for the COP case does not show
pute the area-weighted probability for the interfacial radiusthe proper small speed behavior. Similarly, the more micro-
of curvaturer by multiplying F(x) by x¢-1, and then normal- Scopic method of Ref9] leads to an adequate treatment of

ize the resulting quantity. The resulting probability function the small speed regime for the COP case but does not give
F(X) is the correct large speed tail.

(Ledy g The approach developed here is highly heuristic. Can it be
dr(d/zgctre=r X (49 ~ Systematized? Clearly, to improve this approach one would
[(1/2T((d+z-1)/2) (1 +CxA)HHdz need to include the interactions between different pairs. It is

, b o not clear how one does this.
Following Bray we use)=Ar® to get the distribution func-
tion for the interface speed:
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